在學 machine learning 時常會用到兩種 languages. 一類是 matlab or octave (e.g. Andrew Ng).
另一類是 python (e.g. sckit-learn, etc., 林軒田; UC Washington ML classes). 少數用 R and maybe other languages.
Matlab/Octave 的好處是簡單清楚。處理 vector or matrix or plot 乾淨利落。缺點是 large scale ML 的速度太慢。另外 matlab/octave 沒有很好的 notebook UI.
Python 則相反。即使在用 ipython 的 vector, matrix, plot, 仍然處處有 python 的影子。但好處是速度快, scalable. 最重要的是 ipython notebook 是非常簡單好用的 math or engineering notebook UI.
是否能結合兩者? Yes, Jupyter Noteook. Jupyter notebook 是 ipython notebook 的下一代。把 UI 和 kernel 分開。 UI 就是 ipython notebook interface.
Kernel 則可以是 python, octave, matlab, R, etc.
為了要 install Jupyster, 首先 install python.
Step 1: Use Vmware to install Ubuntu 14.04.4 (TLS) version.
Detailed refer to previous article.
為了方便再 install Dropbox (ubuntu version) for .bashrc, and install kompare, kdiff3, emacs
Step 2: Install Anaconda python (3).
-> Recommend to use Anaconda python 3.5 from the Jupyter website.
Download PYTHON 3.5 64-bit version (Anaconda3-2.5.0-Linux-x86_64.sh)
=> bash ...
(1) Do "conda install jupyter -> update jupyter related files
(2) Do "pip install bash_kernel" -> No need for Octave kernel
Step 3: install octave: sudo apt-get install octave
(3) Do "pip install octave_kernel"
(4) Do "python -m octave_kernel.install"
--> Done.
You can either do on the web:
jupyter notebook -> choose new octave notebook
or
jupyter qtconsole --kernel octave
jupyter console --kernel octave
It works now!
沒有留言:
張貼留言